Folgen des Klimawandels für den Tourismus in den deutschen Alpen- und Mittelgebirgsregionen und Küstenregionen sowie auf den Badetourismus und fluss-begleitende Tourismusformen (z.B. Radwander- und Wassertourismus)

UFOPLAN FKZ 3717 48 107 0

P. Hoffmann, Th. Nocke, F. Hattermann

Contents

1	Datenverarbeitung	3
2	Kartenbereitstellung	4
3	Ergebnisbereitstellung (»)	5
4	Klimawirkung auf die Touristische Nachfrage	6
5	Sonstiges	13

1. Datenverarbeitung

Stationsdaten

Parameter

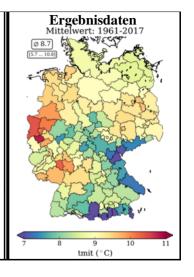
 tmax
 Tagesmaximum der Temperatur

 tmit
 Tagesmittel der Temperatur

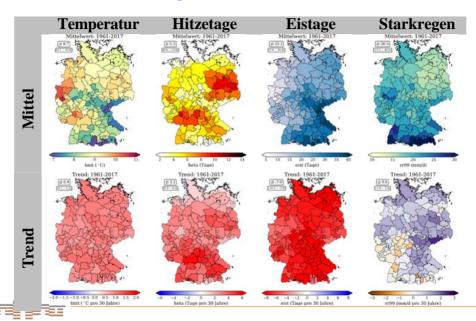
 tmin
 Tagesminimum der Temperatur

 nied
 Tagesniederschlag

 relf
 Relative Luftfeuchte


 ludr
 Luftdruck

dadr Dampfdruck


sonn Sonnenscheindauer

wmax Maximale Windgeschwindigkeit

snow Schneehöhe

2. Kartenbereitstellung

Ergebnisbereitstellung (»)

Klima in den Deutschen Tourismusregionen: 1961-2017

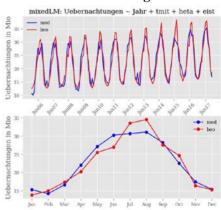
Reiseregionen	RBschi	Einwohner [1000] *	Flasche (km2) •	teit 0	Trend #	hets -	Trend	e eist e	Trend	e px30	Trend	0 1100 ¢	Trend	rr01 e	Trend	* sh10 4	wx25 #
Potsdam	A13	367	100	0.5	1.0	10.0	3	5 21.1	. 4	7 31	.0 0	0 16.2	0.	106.0	0 1	7 10.	4.
Phenilessen	317	632	1.160	10.3	0.0	10.4	4	3 14.6	-	9 31	6 1	5 10.0	-0	105.	4 2	9 2.	2 2.5
Spreovald	ADE	200	2500	0.3	1.0	9.0	3	9 22.	4	3 33	6 0	15.5	0	100.	3	6 9	0 16
Anhalt-Witnesberg	009	300	3629	1.4	1.0	9.9	3	B 21.4	-0	9 31	6 1	1 10.4	1	104.0	5 2	4 9.	2 1.7
Respectations	A09	200	1444	9.3	0.1	9.7	1	B 22.6		0 33	# O	17.4	0	nı	1 1	3 11	0 23
Filtraing	Atl	300	3664	9.3	1.0	9.6		ft 22.1	-	6 31	5 4	0 25.9	- 1	104.9	0	10	1 21
Francisches Werkand	TUS	554	2500	9.3	0.5	9.2	- 5	# 20.1	- 4	11 31	2 1	8 37.5	0	110.	1 1	8 5	9 24
Dahme-Seenland	A07	117	777	9.6	1.0	9.0	3	1 22.3	-6	3 31	4 0	8 25.0	(1)	106.	2	2 9	6 2.1
Lausitzer Spenland	A14	61	101	9.1	1.0	9.0	4	2 23.	. 4	B 30	4 1	0 10.0	0	110.		10 10:	1 11
Elbe Elbler Land	A10	104	1.000	9.3	1.1	8.9	- 4	3 22	4	9 31	3 1	1 10.0	0	107.	2. 3	9.	2 1.0
Statt Leipzig	COS	560	291	9.6	0.1	8.8	2	1 20.1	1 36	7 31	3 0	7 17.0	0	1043	2	4 7.	1 1.6
Städleregion Nümberg	T13	782	967	8.0	1.0	8.8	4	5 RL	1 -6	9 31	3 1	2 10.0	- 1	116.0	5 0	.no	e 3.1
Openward Bergstrasse-Neckartal	(15)	1076	2572	0.9	1.0	8.0	4	4 16.2	- 4	3 31	1 1	0 20.0	-0	122.5	5 4	1 9	p 0.4
Nordichen Baden-Würtlemberg	1.40	2404	0000	19.4	1.1	8.5	- 5	B 19.2		4: 31	1 1	B 21.2	0.0	124.0	n - 2	5 6	2 (1/

4. Klimawirkung auf die Touristische Nachfrage

RBSchl,	Kategorie,	Demo,	Jahr,	Monat,	Ankuenfte,	Uebernachtungen,	tmit,	nied,	sonn,	relf,	snow,	heta,	eist,	rr30,	sturm
T15,	K86,	28.4,	2006,	1,	118.2,	636.7,	-5.5,	47.3,	89.6,	86.3,	33.4,	0.0,	17.8,	8.1,	0.0
T15,	K86,	28.4,	2005,	2,	134.9,	677.8,	-3.1,	187.4,	63.8,	86.0,	55.8,	0.0,	12.7,	8.8,	0.0
T15,	K86,	28.4,	2006,	3,	92.8,	416.4,	0.1,	149.3,	94.2,	83.3,	47.2,	0.0,	7.1,	0.1,	0.0
T15,	K86,	28.4,	2006,	4,	189.2,	478.8,	7.5,	85.1,	148.6,	77.7,	1.0,	0.0,	8.8,	0.0,	0.0
T15,	K86,	28.4,	2006,	5,	126.2,	538.6,	12.3,	147.7,	198.9,	70.3,	0.0,	0.0,	0.0,	0.6,	0.0
T15,	K06,	20.4,	2006,	6,	149.5,	683.6,	16.5,	81.0,	250.9,	69.3,	0.0,	1.1,	0.0,	0.3,	0.0
T15,	K86,	28.4,	2006,	7,	171.3,	845.3,	20.8,	66.2,	318.6,	66.9,	0.0,	7.1,	8.8,	8.2,	0.0
T15,	K86,	28.4,	2005,	8,	188.1,	1822.6,	14.1,	161.9,	118.2,	82.5,	0.0,	0.0,	8.8,	8.3,	0.0
T15,	K86,	28.4,	2006, 2006,	10,	164.3, 144.7,	752.8, 646.9,	15.5,	26.2,	215.8,	76.7, 83.3,	0.0,	9.8,	8.8,	8.2,	0.0
T15,	K86,	20.4,	2006,	11,	68.3,	249.1,	4.4.	59.2,	66.1,	88.6,	0.1,	0.0,	0.2,	0.0,	0.0
T15,	K86,	28.4.	2006,	12,	183.8,	455.2.	1.0.	51.4,	71.6,	98.9.	0.1,	0.0,	4.4.	8.8,	0.0
T15,	K86,	28.5,	2000,	1,	96.8,	499.4.	2.4.	136.8.	31.9,	87.7,	3.9.	0.0,	4.3.	8.2,	2.2
T15,	K86,	28.5,	2007,	ž,	128.3,	631.8,	2.9,	89.1,	79.8,	86.3,	2.1,	0.0,	0.1,	0.0,	0.0
T15,	K86,	28.5,	2007,	3,	89.2,	358.4,	5.1,	58.1,	162.2,	74.1,	0.2,	0.0,	8.1,	8.8,	0.0
T15.	K86,	28.5.	2887	4,	111.1.	463.4.	11.2.	8.5.	386.1.	57.1.	0.0,	0.0,	8.8,	8.8.	0.0
T15,	K06,	20.5,	2007,	5,	132.5,	561.2,	13.5,	134.1,	229.0,	70.1,	0.0,	0.2,	0.0,	0.4,	0.0
T15,	K86,	28.5,	2007,	6,	144.6,	650.2,	17.2.	91.1,	238.5,	72.2.	0.0,	0.6,	8.8,	0.3,	0.0
T15,	K85.	28.5,	2887.	7,	166.3,	818.9.	17.0.	153.5.	222.7.	74.1,	0.0,	4.3,	8.8.	8.7.	0.0
T15,	К86,	28.5,	2007,	8,	183.0,	1885.7,	16.2,	59.9,	207.4,	76.6,	0.0,	0.1,	8.8,	0.0,	0.0
T15,	K86,	28.5,	2007,	9,	169.4,	741.2,	10.9,	139.0,	127.7,	84.1,	0.0,	0.0,	8.8,	0.3,	0.0
T15,	K86,	28.5.	2007.	10,	148.8.	665.6.	7.1.	24.8.	128.9.	85.2.	0.0.	0.0,	8.8.	0.0.	0.0
T15.	K06.	20.5.	2007.	11.	77.8,	284.7.	0.7.	150.0.	40.1.	91.0.	8.6.	0.0.	3.9.	0.6.	0.3
T15,	K86,	28.5,	2007,	12,	101.1,	452.7,	-1.0,	79.3,	45.9,	88.4,	1.8,	0.0,	13.8,	8.2,	0.0
T15,	K85,	28.6,	2008.	1,	188.9,	512.9,	8.4,	56.7,	57.5,	88.1,	1.4.	8.8,	4.7,	8.8,	0.0
T15,	K86,	20.6,	2008,	2,	127.8,	692.8,	1.7,	64.3,	133.7,	78.8,	0.1,	0.0,	2.6,	8.5,	0.0
T15,	K86,	28.6,	2000,	3,	118.6,	499.3,	2.8,	141.8,	186.7,	79.2,	3.4,	0.0,	1.4,	8.1,	0.7
T15,	K86,	28.6,	2008,	4,	92.5,	341.4,	7.4,	90.6,	141.5,	77.3,	0.1,	0.0,	0.0,	0.0,	0.0
T15,	K86,	20.6,	2008,	5,	165.8,	694.5,	14.1,	37.6,	243.4,	67.5,	0.0,	1.3,	0.0,	0.0,	0.0
T15,	K86,	28.6,	2008,	6,	132.4,	575.7,	16.9,	74.4,	210.1,	73.8,	0.0,	1.0,	8.8,	8.1,	0.0
T15,	K86,	28.6,	2008,	7,	178.6,	897.4,	17.2,	188.7,	288.4,	73.3,	0.0,	1.9,	8.8,	8.2,	0.0
T15,	K86,	28.6,	2000,	8,	182.9,	964.3,	16.7,	85.1,	221.1,	75.5,	0.0,	0.7,	8.8,	8.2,	0.0
T15,	K86,	28.6,	2888,	9,	145.9,	687.8,	11.5,	65.1,	128.2,	79.8,	0.0,	0.2,	8.8,	8.2,	0.0
T15,	K86,	20.6,	2008,	10,	148.1,	639.5,	7.7,	58.1,	96.2,	88.0,	0.0,	0.0,	0.0,	0.0,	0.0
T15,	K86,	20.6,	2008,	11,	81.0,	295.9,	3.3,	56.3,	57.8,	88.6,	1.3,	0.0,	2.4,	0.1,	0.0
T15,	кв6,	28.6,	2888,	12,	188.9,	462.1,	-8.2,	61.8,	71.2,	87.9,	1.1,	0.8,	7.4,	8.8,	0.0
T15,	K86,	28.8,	2009,	1,	184.3,	493.6, 550.9,	-4.8,	24.6,	82.9,	86.0,	2.1,	0.0,	18.9,	0.0,	0.0
T15,	K86,	28.8,	2009,	2,	112.3,		-1.7,	100.2,	44.5,	87.3,	13.4,	0.0,	18.8,	0.1,	
115,	K86,	28.8,	2009,	3,	86.3,	349.8,	2.5,	76.7	72.3,	83.2,	6.0,	0.0,	8.2,	8.8,	0.0
T15,	K86,	20.8,	2009,	4, 5,	111.1,	458.2, 568.2,	13.3.	126.0.	261.4,	64.3, 76.1,	0.0,	0.0,	8.8.	0.7,	0.0
T15,	K86,	28.8,	2889,	6.	143.3.	639.1,	14.6.	189.6,	198.8,	76.4.	0.0,	0.0,	8.8,	8.1,	0.9
T15,	K86,	20.8,	2009,	7,	174.1,	864.9,	17.2,	147.1,	207.8,	78.3,	0.0,	0.9,	0.0,	8.7,	0.0
T15,	K86,	28.8,	2009,	é,	284.9,	1853.8,	18.0,	79.9,	245.4,	76.5,	0.0,	0.6,	8.8,	8.1,	0.0
T15,	K86,	28.8.	2889.	9,	149.8.	701.1.	14.3.	43.5.	188.8.	81.0.	0.0.	0.1,	8.8,	8.8.	0.0
T15.	K86,	20.8,	2009,	10,	148.9,	641.3,	6.8.	85.0,	81.3,	87.8.	0.1,	0.0,	0.2,	0.1.	0.0
T15.	K86,	28.8.	2009.	11.	85.3,	395.0.	5.0.	82.9.	66.8.	90.3.	0.0.	0.0,	8.8.	8.2.	0.0
T15,	KB5,	28.8,	2009,	12,	182.6,	448.7,	-1.2.	94.3,	29.8,	98.8,	0.9,	0.0,	18.4,	8.1,	0.0
T15,	K06,	21.8,	2010,	1,	111.1,	492.7,	-4.4,	72.6,	29.6,	90.6,	13.1,	0.0,	24.2,	0.0,	0.0
,	,		23101			100.17	2.014.9		20101			-107	~	-107	-10

Kategorien

- **K01** Keiner Kategorie zugeordnet
- **K02** Seenlandschaften
- **K03** Offene Natur- und Kulturlandschaften
- K04 Flussläufe
- K05 Voralpenland
- **K06** Mittelgebirge (Winter, also Ganzjahr)
- K07 Ostseeküste
- K08 Nordseeküste
- **K09** Mittelgebirge (Sommer, Herbst, Frühling)
- K10 Alpen



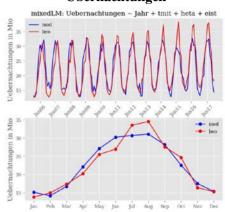
Paneldatenanalyse:
$$Y_{ij} \sim \theta_0 + \theta_1 \begin{pmatrix} X_{ij} \\ X_{ij} \end{pmatrix} + \ldots + \theta_n \begin{pmatrix} X_{ij} \\ X_{ij} \end{pmatrix} + \varepsilon_{ij}$$

Ankünfte

mixedLM: Ankuenfte - Jahr + tmit + heta + eist Ankuenfte in Mio 11 Ankuenfte in Mio

Übernachtungen

Hinweis: Trend wird nicht durch Klimaindikatoren erklärt! Unterschätzung der Übernachtungen in den Sommerferien!



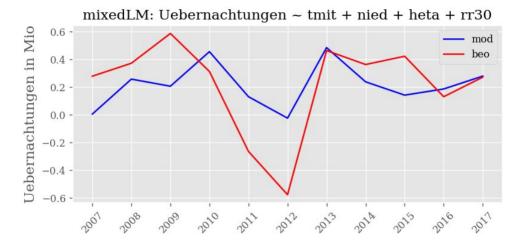
Paneldatenanalyse:
$$Y_{ij} \sim \theta_0 + \theta_1 (X_{ij} + \ldots + \theta_n (X_{ij} + \epsilon_{ij})$$

Ankünfte

mixedLM: Ankuenfte - Jahr + tmit + heta + eist Ankuenfte in Mio 11 Ankuenfte in Mio

Übernachtungen

Hinweis: Trend wird nicht durch Klimaindikatoren erklärt! Unterschätzung der Übernachtungen in den Sommerferien!


Paneldatenanalyse: Statistik

Model:MixedLMNo. Observations:14112No. Groups:98Dependent Variable:UebernachtungenMethod:REMLScale:14393.0983Likelihood:-87881.8645

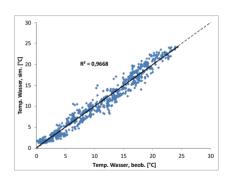
	Coef .	Std.Err.	z	P > z
Intercept	-10045.700	590.991	-16.998	0.000
Jahr	5.044	0.294	17.185	0.000
tmit	13.496	0.237	57.001	0.000
heta	-9.895	0.645	-15.333	0.000
eist	5.804	0.351	16.524	0.000
groups RE	51108.852	61.495		

Sommertourismus (Ostseeküste)

Hinweis: Die Jahr-zu-Jahr Schwankungen der Übernachtungen an der Ostseeküste in den Sommermonaten (Jun-Aug) können näherungsweise durch Klimaindikatoren erklärt werden!

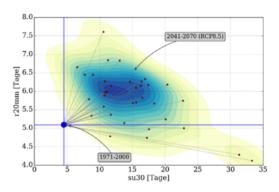
Wintertourismus (Alpen)




Hinweis: Die Jahr-zu-Jahr Schwankungen der Übernachtungen im Alpengebiet in den Wintermonaten (Jan-Mar) können näherungsweise durch Klimaindikatoren erklärt werden!

5. Sonstiges

Badegewässertemperaturen (z.B. Starnberger See)


Hinweis: Schätzung der Badegewässertemperaturen auf Grundlage der Tagesmitteltem-

Projektionen

	su30: (1971-2000, sw=30°C, n=4.5d, perc=98.80 th)											
	ECE	CN5	CA2	MP1	HG2	MP2	EC2	EC1	IP5	MI5		
WRF	1.5			2.3	4.4				3.0			
CLM	1.2	1.8	5.1	0.7	6.1					4.4		
HIR	0.1											
RAC	0.7				4.3		0.7	0.9				
REM	1.4	1.5	1.4	3.2	4.6	3.4				3.9		
W13	7.7	7.5	8.2	8.3	7.9					7.4		
ST3	5.3	4.6	4.9	5.4	4.7					4.9		
RCA	1.2	2.7		1.2	6.5				2.0			

Hinweis: Ohne Bias Korrekturen der Klimamodellsimulationen würden Klima-Indikatoren (z.B. Hitzetage) in der Mehrheit der Modelle unterschätzt: anstatt 4.5 Tage nur 1-3 Tage!

